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Abstract. A group theoretical understanding of the two-dimensional fractional supersymmetry

is given in terms of the quantum Poinéagroup at roots of unity. The fractional supersymmetry
algebra and the quantum group dual to it are presented and the pseudo-unitary and irreducible
representations of them are obtained. The matrix elements of these representations are explicitly
constructed.

1. Introduction

Quantum algebras at roots of unity are regarded to be useful in formulations of some physical
systems whose theoretical understanding is not very clear [1]. Obviously, to achieve a complete
understanding of the role of these algebras in applications to physical systems one should
know the quantum groups which are dual to them. Indeed, IrE[2]L, 1) at roots of unity

and in [3] SL, (2, R) at roots of unity were constructed. In the formulation of these groups
one is obliged to introduce some new variables which are the generalized Grassmannians
n+ satisfyingn? = 0 wherep is a positive integer. On the other hand, these coordinates
were used to obtain superspace realizations of the fractional supersymmetry charges [4-7].
Although some algebraic properties of the two-dimensional fractional supersymmetry were
discussed in [5], the correct behaviour under the Lorentz generator could be obtained in terms
of some restrictions and a spectral parameter.

A group theoretical understanding of the fractional supersymmetry appears to be lacking.
Our aim is to shed some light on the group theoretical aspects of fractional supersymmetry in
two dimensions. Hence, guided by the formulation of the two-dimensional quantum Foincar
algebra at roots of unity [2], we introduce the fractional supersymmetry algébemdowed
with a Hopf algebra structure. We present the quantum gbppvhich is its dual. Pseudo-
unitary, irreducible corepresentations.df. are given and the matrix elements of them are
explicitly calculated. We, then, define the pseudo-unitary quasi-regular corepresentation of
Apr and the correspondingrepresentation o/ .
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2. Fractional supersymmetry algebra and its dual
Let us deal with the two-dimensional Poineaalgebral/ (e(1, 1)) generated byP. and H
possessing the commutators

[P+, P.]=0 [Pi, H] = +iPy Q)
and the involutions

Pi =P, H*=H. 2
The two-dimensional fractional supersymmetry genergtarare defined to satisfy

pL=P: 3)
wherep is a positive integer, without any condition on the commutation relatiop.afith
p_. Obviously, the simplest choice js.p_ = p_p.. Thus, the quantum Poindaglgebra at
roots of unitylU, (e(1, 1)) with ¢” = 1, p is an odd, positive integer, generated fay and«
satisfying

[p+.p-1=0  kpr=q*pix k" =1 (4)

with the involutions

*

Pi = p+ K=« (6)

which suits our purposesyldenotes the unit element of the algebra.

The two-dimensional fractional supersymmetry algebra denéted= (U (e(1, 1)),
U,(e(1, 1)) is generated by, H, p+, « satisfying (1)—(5) and moreover, the commutation
relations

[
[«, H] =0 [P+, H] ::l:;l’ﬂ:' (6)
The latter is the consequence of (1) and (3).
The basis elements &f- are
¢nmkrsl = pﬁpTKkP: PiHl (7)
wheren, m, k, r, s, | are positive integers.
We can equig/r with the Hopf algebra structure
APy) =P 1y +1y ® Py e(Py) =0 S(Py) = —Py
AH)=H®Q1,+1,  H e(H)=0 S(H)=—H

A(ps) = p2 @K +k 1 ® ps e(p+) =0 S(ps) = —q ' ps
Alk) =k QK e(k™ =1 Sk*hy =«

Now, we would like to present the groups which are dual to the algebras considered above.
The x-algebraA(E (1, 1)) of infinitely differentiable functions on the two-dimensional
Poincag groupE (1, 1) is dual to the algebr&/ (e(1, 1)). For any f(z+,z_, A) € A(E(1, 1))
we have the involution

4 =z4 A=A 9)

e2L 0 T+
( 0 e z) € E(1,1).
0O O 1

(8)

where
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The two-dimensional quantum Poinéagroup at roots of unity [2] is the-algebra
A(E, (1, 1)) with g” = 1, generated by, § satisfying

N_n+ = q2n.n- ned = g8 (10)
7l =0 57 =1, (11)
Ma =N 8= (12

where 1, is the unit element ofA. The dual ofUr is the x-algebradr = A(E(1, 1)) x
A(E, (1, 1)) with the Hopf algebra structure

Aw) =ne @ Ly + 5P @y e(ne) =0 Sny) = =86,
AB)=86Q®36 (™™ =1 S5+ = §F¢
AM)=2031,+1, @A e(A) = —A S() = —x

+n?

p—1
AGe) =22 @1y +€7 1, ®zs + (D)7 > 4 _pprsEngnlr @ g
= [p —n]![n]!

S(z+) = —z+ e(z+) =0.

We use the symmetrig-number

n

9" —q°
nl == ———
g q—q7*
and theg-factorial z]! = [n][n — 1]...[1].
Since any function ofA(E (1, 1)) can locally be expanded in Taylor series, there is a local
basis of 4 given by

a"" ! = e (k, 8)2,2 (13)
wheren, m, k, t, s, [ are positive integers and we defined

142
tm,8) == g """
p n=0
The duality relations betweet andU are

n—

(@mest, @ KISy = st g S A ) ]! Sy S Sy st St Skt ke - (14)

3. Pseudo-unitary, irreducible corepresentations oA »

Let C5°(R) be the space of all infinitely differential functions of finite supporRirand P (z)
denote the algebra of polynomialstisubject to the conditiond = 1 and:* = ¢. The linear
map

7 (Up) : C°(R) x P(r) - C5°(R) x P(1)
given as
T (p) f(X)a(t) = (—r)YPe*/PrH f(x)a(t)
7, (P2) f(x)a(t) = —re™ f(x)a(r)
m,(H) f(x)a(t) = —i%f(X)a(t)
7, (k) f()a(t) = f(x)a(gt)
defines the irreducible representationltf in Cg°(R) x P(z).

(15)
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Let us introduce the following Hermitian forms for the spagg(R) x P (1),

(fu f) = / dr () o0 (16)

(a1, a2) = D(as(D)as(1)) (17)
where

(I)([S) = (Sx,O(mod P (18)

Cg (R) endowed with the norm induced by (16) leads to the Hilbert space of the square
integrable functions of®. On the other hand (¢) with the pseudo-nornija||?> = (a, a) is
the pseudo-Euclidean space w&}} positive ande*1 negative signatures [2]. Now, one can
verify thatz, defines the pseudo-unitary, irreducibleepresentation of/ for realr.

By making use of the duality relations (14), we can derive from (15) the irreducible
corepresentations ofr as

p—1 00 nmbktsl nmbktsl
(wa = 3, 3 S (19)

nmktsl nmktsl
n,m,k=0¢t,s,1=0 <¢ d )

which is pseudo-unitary for real
Consider the Fourier transform ¢f(x) € C3°(R)
+o0
FQ) = f(x)e™ dx. (20)
—00
This integral converges for any complexF (v) is an analytic function and moreover, satisfies
(v=v1+ivp)

|F (v +ivp)| < Kel (21)
for some real constanf§ andc. Then we can write the inverse transform as
c+ioo
fx) = — F(v)e ™ dv. (22)
27i c—ioo

The Fourier transform df;. (19) yields the pseudo-unitary corepresentation in the space
of functionsF (v)a(t) as

ctioo p—1
Q. (F(t*) = / Cdu ) 0L, L ) F(wt! (23)
c—loo 1=0

where we denoted the variablesgas: (go; g,) = (z+, 2—, A; n+, n—, 8) and the kerneQ;, is
forl >k

0L, 1, 8) = (g 0 " w]_ (£)8K]_, (v, 1, go)

0 (§) g P )P KT, (v, 1, g0) (24)
forl <k
Q. i, &) = (¢ 0"l ()8 Ky (v, 1, g0)

+wp_ (E)(q7*n) '8 K], (v, . go). (25)

We introduced, in terms df = gn.n_, the polynomials

p—s—=1 . 1/p\2m+s
e =y )

m=0

(q°§)" (26)

[n]'[m + s]!
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and the functionx? are
+00
K" (v, i, go) = iew»/ grE ez ) tx(v—p+s/p) q. (27)
sae 2mi o

By utilizing the analogue of polar coordinates- O, 8 € R, the pseudo-Euclidean plane
defined by the axis_ = 0 andz, = 0 can be studied in terms of the quadrants
Quad. 1: z+72- >0 2t = 3pe*f
Quad. 2: 72+7- <0 7y = £3pef

-1
Quad. 3: 7472 >0 74 = 7peiﬂ

Quad. 4: 74z2- <0 74 = :F%peiﬂ.

In these quadrants (27) will lead to the Hankel functiéf{®’, H® or cylindrical functions
of imaginary argumenk,

. 1 (u—v—s/p)(B+Z)+ur 7D
Quad. 1:  K[(v, i, go) = 34 /Mg D (rp)

. - g _z 2
Quad 2: Ks (V, ", gO) — %e(li v—s/p)(B 2)+M)»Hli_)v_x/p(rp)

1 xi
Quad. 3: Kl (v, i, go) = —eW—v=s/mBraituhg, . (rp)
i

1 xi
Quad_ 4: KS’(U’ "w, go) = Ee(M7U7S/p)('37?)+M)LKM7\;73/[7(V)O)

with the condition—1 < Re(v — u +s/p) < 1[8].

4. Quasi-regular corepresentation of4r and x-representation of the fractional
supersymmetry algebra

The comultiplication

defines the pseudo-unitary left quasi-regular corepresentatiodroin its subspaced
consisting of the finite sums

X = Zas(nh nf)fs(zh Zf)

wherea; (1., n-) are polynomials im., n— and f,(z+, z-) € C°(R?). The space4 can be
endowed with the Hermitian form

(X,Y) =Zp(XY") (29)
X, Y € Aand the linear functionalz: A — C

Tp(X) = Y _I(a)Ic(f) (30)
is the left invariant integrsal where [2]

Imin™) = G~ 85, p-18m,p-1 (31)

et = | Tdede fyenz. (32)

The right representation of the fractional supersymmetry alg€preorresponding to the
quasi-regular representation (28),

R(P)X = (¢ ®id)A(X) (33)
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¢ € Ur, is ax-representation
(R()X, Y)E = (X, R(9")Y)E

because the Hermitian form (29) is defined in terms of the left invariant integral (30).
The right representations on the variabjesand f (z+, z—) can explicitly be written as

R(poyls =ig k™ R(poink =0
In
RONE = gk R(H)n" = i;ni
L (=D'7 L df df (34)
2 _ph =L R(Py)f =i—
1 des (Po)f =157
df

codf
R f=f RH)f =lze— —lz-——.
dZ+ dZ,

In terms of the following relations satisfied by the right representation
R(#9") = R($"R(9)
R(p)(XY) = R(p+) XR()Y + Rk HXR(p+)Y
RK)(XY)=R(K)XR(K)Y
R(H)(XY)=R(H)XY + XR(H)Y

R(po) f =lq

we can define the action of an arbitrary operakd@y) on any function inA4.

The quantum algebra which we deal with possesses one Casimir elémenp.p_.
As the complete set of commuting operators we can ch@i€®, R(H), R(x) andL(H),
L(x) whereL(¢) is the left representation of the elementlefined similar to (33) with the
interchange o$ with the identity id. One can easily observe tiaH )X = 0andL(k)X = X
forany X € A, so that, in the spacd the matrix elements can be labelledias, ,,,,. Indeed,
in terms of the kerne’ = (24) one observes that

mn

Dnv,OO = an(v, 0, g)
n € [0, p — 1], satisfy

R() Dyuy.00 = q" Dny,00
R(H)Dy,,00 = —i(v+n/p)Dyy.00
R(C) D00 = €Dy
R(p+)Dyv,00 = ¢Dps10,00
R(p-)Dyv,00 = ¢Dy—1,,00
R(P+)Dyy,00 = —7 Drv+1,00
wherec = /g and we introduced the notatidd,, oo = Doy+1,00aNdD_1,.00 = Dp—1,-1.00-

The right representation obtained in (34) can be used to write the supercharge operators
R(p+) in the superspace given by, z+ orn_, z_ as

D%, d

R(ps) = ig*i D] + ———n!
[p—1] dzs

(39)

where DY are g-derivatives with respect tg.. This is the same with the realization of
supercharges given in [4—7], obtained in termg-@falculus.
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